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Abstract

This article provides a theoretical treatment of the dynamic interaction between a matrix crack and an
arbitrarily located circular inhomogeneity with a distinct interphase under antiplane loading[ The
matrix:inhomogeneity interphase is characterized by a linear spring model[ The theoretical formulations
governing the steady state problem are based upon the use of integral transform techniques\ Bessel function
expansions and a Pseudo!incident wave technique[ The closed form expression for the resulting stress
intensity factor at the matrix crack is obtained by solving the appropriate singular integral equations
using Chebyshev polynomials[ Typical examples are provided to show the e}ect of the location of the
inhomogeneity\ the material combination and the interface property upon the dynamic stress intensity factor
of the matrix crack[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

A comprehensive body of knowledge exists dealing with the elastostatic behaviour of interacting
reinforced _bres and particles "inhomogeneities# in metal matrix composites\ see e[g[\ the reviews
by Mura "0876# and Evans "0889#[ Most of the quasistatic available solutions assumed that only
two materials with a common interface exist in the composite solid[ It is often the case\ however\
that the reinforcing _bres or particles are surrounded by a thin interfacial layer "interphase#[
This interphase may be created unintentionally as the result of chemical interaction between
the constituents\ or intentionally to enhance the mechanical properties of the composite solid
"McCullough\ 0860 ^ Chiu et al[\ 0883 ^ Wang and Chiang\ 0885#[ The existence of and the
interaction between these coated _bres ultimately govern the mechanical behaviour and the overall
failure mechanism of this class of materials "Achenbach and Zhu\ 0889 ^ Chen et al[\ 0889 ^ Wass\
0881 ^ Drzal and Madhukar\ 0882#[ Accurate assessment of the fracture response of these materials
would thus require a reliable assessment of the possible interaction e}ects between these _bres[
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The corresponding elastodynamic problem has recently evoked interest among researchers
working in the _eld of nondestructive characterization of interfaces and materials engineering[ The
work was mostly motivated by the desire to establish the mechanical properties of interface "Datta
et al[\ 0877\ Olssen et al[\ 0889 ^ Karpur et al[\ 0883#\ the scattering behaviour of the wave
"Schafbuch et al[\ 0889# and material response to dynamic loading "Ramesh and Ravichandran\
0889 ^ Meguid and Wang\ 0883#[

The objective of the present paper is to provide an analytical treatment of the dynamic interaction
between a matrix crack and an arbitrarily located inhomogeneity with distinct interphase subject
to di}erent antiplane incident waves[ The interfacial layer between the matrix and the inhomo!
geneity is modelled in terms of linear springs[ The analysis is based upon the use of a Pseudo!
incident wave technique together with the application of Fourier integral transforms for the crack
and Bessel function expansions for the inhomogeneity[ Two aspects of the work are accordingly
examined[ The _rst is concerned with determining the e}ect of the interfacial property\ material
mismatch and loading frequency upon the resulting dynamic stress intensity factor of the matrix
crack\ while the second is associated with the possible shielding and ampli_cation e}ects observed
in the equivalent static problem[

1[ Formulation of the problem

1[0[ Description of problem

The situation envisaged is that of an elastic in_nitely extended isotropic solid containing a matrix
crack of length 1a and an arbitrarily located circular inhomogeneity of radius R\ as shown in Fig[
0[ The matrix and the inhomogeneity are connected by a thin layer of thickness h[ The shear
moduli of the matrix\ the inhomogeneity and the interphase are assumed to be mM\ mF and min\ and
the corresponding shear wave speeds cM\ cF and cin\ respectively[ A Cartesian "x\ y# and a polar

Fig[ 0[ Interaction between a matrix crack and an inhomogeneity with an interphase[
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"r\ f# coordinate systems are used to characterize the crack and the inhomogeneity[ The distance
between the right tip of the crack and the centre of the inhomogeneity is denoted d and the
inclination angle of the inhomogeneity centre with respect to the x!axis is denoted u[

The solid is subjected to a steady state antiplane wave directed at an angle G with the x!axis\
which can be expressed as

t¹9
xz"x\ y\ t# � t9

xz"x\ y# e−ivt � t cos G e−ikM "xcosG¦ysinG# e−ivt

t¹9
yz"x\ y\ t# � t9

yz"x\ y# e−ivt � t sin G e−ikM "xcosG¦ysinG# e−ivt

w¹ 9"x\ y\ t# � w9"x\ y# e−ivt �
it

kMmM

e−ikM "xcosG¦ysinG# e−ivt "0#

where w9\ t9
xz and t9

yz are the amplitudes of the displacement and stresses\ v is the circular frequency\
and kM � v:cM is the wave number with cM being the shear wave speed of the matrix[

The displacement _eld of the current medium under such an incident wave will satisfy the
following Helmholtz equations "Achenbach\ 0862#\

"91¦k1
M#w � 9 in the matrix "1#

"91¦k1
F#w � 9 in the homogeneity "2#

in which 91 is the Laplacian operator\ kF � v:cF is the wave numbers with cF being the shear wave
speed of the inhomogeneity[ For the sake of convenience\ the time factor exp"−ivt# which applies
to all the _eld parameters has been suppressed[ The non!vanishing stress components in the matrix
and the inhomogeneity\ in a Cartesian system "x\ y#\ are

txz � gxz 6
mM in the matrix

mF in the inhomogeneity
"3#

tyz � gyz 6
mM in the matrix

mF in the inhomogeneity
"4#

with gxz and gyz being the strain components[ The corresponding stresses in the interphase can be
expressed in a polar system "r\ u# as

trz � mingrz\ tuz � minguz "5#

1[1[ Interface model

For _bre reinforced composites\ the interphase between the matrix and the _bre plays a dominant
role in characterizing the mechanical behaviour of composite "Matikas and Karpur\ 0882 ^ Veazie
and Qu\ 0884#[ In fact\ the interphase determines the ability of the composite to transfer load
between the matrix and the _bre\ and as a result governs its toughness[ Although complex interface
waves may exist at the interphase "Jones and Whittier\ 0856#\ the fact that the thickness of that
interphase is usually very small leads to the development of simpli_ed interphase models[ For
examples\ Hashin "0889# studied the e}ect of an imperfect interface upon the equivalent ther!
moelastic properties of _bre reinforced materials by introducing a linear relation between the
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tractions and displacement jumps at the interface[ The corresponding dynamic interface model has
been used in the non!destructive characterization of the interfacial properties of _bre reinforced
composites using ultrasonic waves "Matikas and Karpur\ 0882 ^ Karpur et al[\ 0883\ 0884#[ In the
present study\ it is assumed that the thickness of the interfacial layer is much smaller than the
radius of the _bre and the wave length[ This implies that the inertia e}ects of the interfacial layer
can be ignored[ According to this model\ the radial shear stress trz and strain grz are assumed to be
uniform across the thickness of the interphase\ i[e[

trz =interphase � trz"u#\ grz =interphase � grz"u# "6#

This assumption indicates that

grz"u# �
0
h

ðw"R¦h\ u# =matrix−w"R\ u# =inhomogeneityŁ "7#

Therefore\ substituting "6# and "7# into "5# yields

grz"u# � bðw"R¦h\ u# =matrix−w"R\ u# =inhomogeneityŁ "8#

where

b �
min

h
"09#

is the interfacial sti}ness[ If h in eqn "8# is assumed to be zero and b is regarded as the only
governing parameter of the interface\ this model is the same as that used by Hashin "0889# and
Matikas and Karpur "0882#[ It can be seen that such an assumption reduces the original interfacial
layer into an interfacial spring with b being the spring sti}ness[ When b : �\ eqn "8# leads to

w"R¦h\ u# =matrix � w"R\ u# =inhomogeneity "00#

which indicates that the matrix and the inhomogeneity are perfectly bonded[ When b : 9\ eqn "8#
leads to

trz"u# =interphase � 9 "01#

which is associated with the traction free condition of a hole[

1[2[ Pseudo!incident wave method

To avoid the di.culties associated with the complex boundary and interfacial conditions\ the
original dynamic interaction problem will be decomposed into simpler subproblems which involve
either the crack or the inhomogeneity\ as shown in Fig[ 1[ These subproblems will then be summed
up to provide the superimposed solution of the original problem[

Fig[ 1[ Subproblems subjected to Pseudo!incident waves[
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Let us consider the crack problem _rst "Fig[ 1"A##[ The cracked in_nite medium is subjected to
a Pseudo!incident wave wc

i which consists of the original incident wave w9 and the unknown
scattering wave from the inhomogeneity\ wf\ i[e[

wc
i � w9¦wf "02#

The corresponding Pseudo!incident stress _eld can then be expressed as

tjz"wc
i # � tjz"w9#¦tjz"wf#\ j � x\ y "03#

The re~ection of this incident wave by the crack surfaces will result in a scattering wave wc in the
matrix[ To ensure the traction free condition along the crack surface\ the superposition of the
incident wave and the scattering wave should give zero shear stress at the crack surface\ i[e[

tyz"wc
i # =crack¦tyz"wc# =crack � 9 "04#

which provides the boundary condition from which the single crack problem can be solved[
Consider now the single inhomogeneity problem "Fig[ 1"B##[ The in_nite medium is subjected

to a Pseudo!incident wave wf
i which is the superposition of the original incident wave w9 and the

unknown scattering wave from the crack\ wc\ i[e[

wf
i � w9¦wc "05#

The corresponding Pseudo incident stress _eld can be expressed as

tjz"wf
i# � tjz"w9#¦tjz"wc#\ j � x\ y "06#

As a result of this incident wave\ a scattering wave wf in the matrix and a dynamic _eld wF in the
inhomogeneity are formed[ The interfacial conditions discussed in the previous section indicate
the existence of the following relations ]

trz"R¦h\ u# =matrix � trz"R\ u# =inhomogeneity "07#

trz"R\ u# =inhomogeneity � bðw"R¦h\ u# =matrix−w"R\ u# =inhomogeneityŁ "08#

which provide the continuity conditions for the solution of the single inhomogeneity problem[ The
solution of the original problem can be expressed in terms of a single crack and a single inhomo!
geneity solution\ wc\ wf and wF\ as being

w � 6
w9¦wc¦wf in the matrix

wF in the inhomogeneity
"19#

and the corresponding stress _eld is given by

tjz � 6
tjz"w9#¦tjz"wc#¦tjz"wf# in the matrix

tjz"wF# in the inhomogeneity
j � x\ y "10#

The boundary conditions of the original problem at the crack surface and the continuity
conditions along the interface between the inhomogeneity and the matrix are satis_ed in the
solutions of subproblems A and B[ In addition\ the radiation condition at in_nity can be satis_ed
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by assuming that the scattering _elds "wc and wf# vanish at points far from the crack and the
inhomogeneity[

2[ Dynamic interaction problem

2[0[ Solution of subproblems

The solution of the original interaction problem can be obtained by using Pseudo!incident wave
method which considers the behaviour of a single crack and a single inhomogeneity solution[
Consider now a single crack subjected to a dynamic antiplane loading[ By using Fourier transform\
the general solution of the displacement and stress _elds can be expressed in terms of the following
dislocation density function ]

c"x# �
1wc"x\ 9¦#

1x
\ =x= ¾ a "11#

with wc"x\ 9¦# being the displacement of the upper surface of the crack[ The total stress _eld can
be decomposed into the incident _eld and the scattering _eld[ To maintain the original traction
free condition of the crack surface "Fig[ 1"A##\ the crack surface boundary "in the scattering
problem# is assumed to be subjected to a shear stress due to the Pseudo!incident wave wc

i but in
an opposite direction\ i[e[ tyz =crack � −tyz"wc

i # =crack ðeqn "04#Ł[ The imposition of this boundary
condition results in a singular integral equation for c"x# which involves the well!known square!
root singularity[ This singular integral equation can be solved by using Chebyshev polynomials
expansion of c"x#\ as

c"x# � s
�

n�9

An

X 0−
x1

a1

Tn 0
x
a1 "12#

Integrating "11# and using the orthogonality conditions of the Chebyshev polynomials lead to
A9 � 9[ By truncating the Chebyshev polynomials to the Nth term and considering the boundary
conditions at N!collocation points along the crack surface\ the solution for An can be expressed as

"A# � ðS0Ł"tc
i # "13#

where "A# � "A0\ A1\ [ [ [ \ AN#T\ "S0# is a known matrix and

"tc
i # � "t0\ t1\ [ [ [ \ tN#T "14#

being the boundary stress due to the Pseudo!incident wave at the collocation points of the crack
surface "refer to Appendix A for details#[ According to eqn "03#\ this boundary stress can be
expressed as

"tc
i # � "t9#¦"tf# "15#

with "t9# and "tf# being the shear stress at the collocation points along the crack surface due to
the original incident wave and the scattering wave of the inhomogeneity problem\ respectively[
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According to this solution\ the scattering displacement and stress of the crack problem along the
interphase boundary "r � R¦h# can be described in terms of "A# in the following form ]

wc"f# � wc"x¹ \ y¹# � ðF0"f#Ł"A# "16#

tc
rz"f# � tc

xz"x¹ \ y¹# cos f¦tc
yz"x¹ \ y¹# sin f � ðF1"f#Ł"A# "17#

where

ðF0"f#Ł � "p0"x¹ \ y¹#\ p1"x¹ \ y¹#\ [ [ [ \ pN"x¹ \ y¹## "18#

ðF1"f#Ł � "p¹0"x¹ \ y¹#\ p¹1"x¹ \ y¹#\ [ [ [ \ pN"x¹ \ y¹## "29#

and

x¹ � a¦d cos u¦"R¦h# cos f and y¹ � d sin u¦"R¦h# sin f "20#

with p0\ p1\ [ [ [ \ pN ^ p¹0\ p¹1\ [ [ [ \ p¹N being known functions given in Appendix A[
Let us now consider the displacement and stress _elds due to a single inhomogeneity with an

interphase subjected to a Pseudo!incident wave wf
i [ The general solution of the displacement _eld

of the present problem can be expressed in a polar coordinate system "r\ f#\ as shown in Fig[ 0\ as

wf"r\ f# �

F

G

j

J

G

f

s
�

n�9

H "0#
n "kMr#ðan einf¦bn e−infŁ in the matrix

s
�

n�9

Jn"kFr#ðcn einf¦dn e−infŁ in the homogeneity

"21#

where H "0#
n and Jn are Hankel function and Bessel function of the _rst kind\ respectively[ The

displacement _eld in the interphase can be obtained by using the interphase model discussed in the
previous section as

w"r\ f# =interphase � w"R\ f#¦
r−R

h
ðw"r¦h\ f#−w"R\ f#Ł "22#

The solution of an\ bn\ cn and dn corresponding to an incident wave wf
i be obtained by making use

of the interphase model\ eqns "07# and "08#\ such that ]

6
an

cn7� ðKnŁ g
1p

9 6
wf

i =inter

trz"wf
i# =inter7r�R¦h

e−inf df "23#

6
bn

dn7� ðKnŁ g
1p

9 6
wf

i =inter

trz"wf
i# =inter7r�R¦h

einf df "24#

where

ðKnŁ � −
0
1p $

H "0#
n ðkM"R¦h#Ł −Jn"kFR#−hmFkFJ?n"kFR#:min

mMkMH "0#
n ?ðkM"R¦h#Ł −mfkFJ?n"kFR# %

−0

"25#

with the prime "?# representing the derivative with respect to the variable in the parentheses[



X[D[ Wan`\ S[A[ Me`uid : International Journal of Solids and Structures 25 "0888# 406Ð420413

2[1[ Interaction between the crack and the inhomo`eneity

The single crack and the single inhomogeneity problems discussed above are coupled in the
sense that the scattering wave from the crack subproblem becomes the incident wave for the
inhomogeneity subproblem[ In addition\ the resulting scattering wave from the inhomogeneity
subproblem becomes the incident wave for the crack subproblem[ These relations will be used to
determine the coupled solution of the original problem[ Since the Pseudo!incident wave of the
inhomogeneity subproblem consists of the original incident wave and the scattering wave of the
crack subproblem\ by making use of "16# and "17#\ the solution given by "23# and "24# can be
rewritten in terms of the solution of the crack problem\ "A#\ as follows

6
an

cn7� ðKnŁ g
1p

9 0$
F0"f#

F1"f#% "A#¦$
w9"f#

t9
rz"f#%1 e−inf df "26#

6
bn

dn7� ðKnŁ g
1p

9 0$
F0"f#

F1"f#% "A#¦$
w9"f#

t9
rz"f#%1 einf df "27#

where w9"f# and t9
rz"f# are the displacement and stress _elds corresponding to the initial incident

wave along the inhomogeneity boundary "r � R ¦ h#[ According to this solution\ the shear stress
due to the scattering _eld of the inhomogeneity at the crack site can be obtained by

tf
yz"x# � trz"r¹\ f¹ # sin f¦tfz"r¹\ f¹ # cos f

� ðF2"x#Ł"A#¦"F3"x## "28#

where ðF2"x#Ł and F3"x#Ł are two known matrices given in Appendix B and

r¹ � zd1¦"x−a#1−1d"x−a# cos u\ f¹ � −
p

1
−tan−0 d cos u−"x−a#

d sin u
"39#

Therefore\ the corresponding stress at the collocation points of the crack surface can be expressed
as

"tf# � ðS1Ł"A#¦"S2# "30#

where

ðS1Ł �

K

H

H

H

H

k

F2"x0#

F2"x1#

[ [ [

F2"xN#

L

H

H

H

H

l

\ "S2# �

K

H

H

H

H

k

F3"x0#

F3"x1#

[ [ [

F3"xN#

L

H

H

H

H

l

"31#

Substituting eqns "30# and "15# into eqn "13# gives

"A# � ðS0Ł""t9#¦ðS1Ł"A#¦"S2## "32#

from which "A# can be obtained as being

"A# �"I−ðS0Ł ðS1Ł#−0"ðS0Ł"t9#¦ðS0Ł"S2## "33#
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The dynamic stress intensity factor at the right tip of the crack in the presence of the inhomogeneity
can then be obtained in terms of An "n � 0\ 1\ [ [ [ \ N# as being

KIII � mMzpa s
N

n�0

An "34#

3[ Results and discussions

The theoretical analysis described in previous sections is used to investigate the e}ect of the
pertinent parameters upon the dynamic stress intensity factor at the crack under an incident
antiplane harmonic wave[

To verify the validity of the current method\ consider _rst the quasistatic antiplane interaction
between a perfectly bonded circular inhomogeneity and a collinear semi!in_nite crack with an
initial stress intensity factor "K9#[ The solution of this problem can be predicted by the current
method for a relatively large crack length "a:R × 2#[ The normalized stress intensity factor
"K� � KIII:K9# predicted by Turska!Klebek and Sokolowski "0873# is compared with that cal!
culated by the current method in Fig[ 2 for di}erent material combinations using twenty terms in
the Chebyshev polynomial expansion and forty terms in the Bessel function expansion[ In view of
the excellent agreement observed between the two\ even for the case where the inhomogeneity is
very close to the crack tip "e � d−R � 9[0R#\ the number of terms used in this example was
retained for the remainder of this study[

Consider now the case of an arbitrarily located inhomogeneity interacting with a crack[ The

Fig[ 2[ Quasistatic interaction between a crack and an inhomogeneity[
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Fig[ 3[ E}ect of the frequency upon the normalized dynamic stress intensity factor K� for a normal incident wave[

present formulations predict the dependence of the normalized stress intensity factors
"K� � KIII:tzpa# upon the location and size "d:a\ u and R:a# of the inhomogeneity\ the material
combination\ the normalized interface sti}ness "l � ab:mM#\ the normalized frequency "kMa# and
the incident angle "G# of the incident wave[ It should be recognized that only the amplitude of the
complex dynamic stress intensity factor at the right tip of the crack is considered in the following
_gures[

Figure 3 shows the variation of K� vs the normalized wave number kMa for di}erent interface
sti}ness "l#[ A normal incident wave is considered and it is assumed that e:a � 9[1\ R � a\
h:a � 9[93 and cM � cF\ rF � rM with r being the mass density[ The well!known overshoot phenom!
enon for the single crack problem is observed for all the cases examined[ The _gure indicates that
a decrease in the interface sti}ness will lower the characteristic frequency at which K� reaches the
maximum value[

Figure 4 shows the variation of K� of a crack subjected to an oblique incident wave "G � 34>#
with kMa for a collinear case\ where e:a � 9[1\ R � a\ h:a � 9[93 and cM � 9[4cF\ rM � rF[ In this
case\ a perfectly bonded inhomogeneity "l � �# provides a shielding e}ect at the matrix crack for
kMa ³ 0[7[ However\ with the decrease in the interface sti}ness "l ³ 1[9#\ such a shielding e}ect
changes to ampli_cation[

Figure 5 shows the variation of K� vs frequency for the case where the inhomogeneity is directly
above the crack[ In this case\ the normal incident wave "G � 89># is considered and it is assumed
that d1 � a1¦"d¦R#1\ d � 9[4a\ R � a\ h:a � 9[93\ cM � 9[4cF and rM � rF[ It is interesting to
observe that for high frequencies "kMa × 0[9#\ the inhomogeneity provides a shielding e}ect at the
crack for all the interface conditions considered[ For the case where the inhomogeneity is placed
directly below the crack with G � 89>\ the stress _eld at the crack tip is reduced "Fig[ 6#[



X[D[ Wan`\ S[A[ Me`uid : International Journal of Solids and Structures 25 "0888# 406Ð420 416

Fig[ 4[ E}ect of the frequency upon the normalized dynamic stress intensity factor K� for an oblique incident wave[

Fig[ 5[ E}ect of an inhomogeneity above the matrix crack upon the normalized dynamic stress intensity factor K�[
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Fig[ 6[ E}ect of an inhomogeneity below the matrix crack upon the normalized dynamic stress intensity factor K�[

Let us now consider some interesting limiting cases of the examined system[ When cM:cF : 9
and rM:rF � constant\ the inhomogeneity reduces to a rigid inclusion with a _nite mass density[
In addition\ when mM:mF : � and rM : rF : �\ the inhomogeneity reduces to a hole which
corresponds to a fully debonded inhomogeneity[

4[ Concluding remarks

A general analytical solution is provided to the dynamic interaction problem of a matrix crack
with an arbitrarily located inhomogeneity with a distinct interphase under antiplane loading[ The
analysis is based upon the use of a newly developed Pseudo!incident wave method[ This method
can be generalized to treat more complex interaction problems involving multiple cracks and
inhomogeneities[

The validity and versatility of the present solution have been demonstrated by application to
speci_c examples[ Furthermore\ the e}ect of the location of the inhomogeneity\ the material
combination and the frequency of the incident wave upon the dynamic stress intensity factor of
the matrix crack and the resulting shielding and ampli_cation e}ects are examined and discussed[
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Appendix A

The matrix ðS0Ł used in eqn "13# is given by

ðS0Ł−0 � ðsljŁ\ slj �

sin 0
jlp

N¦01
sin 0

jp
N¦01

¦`j"xl#\ j\ l � 0\ 1\ [ [ [ \ N

where

`j"x# �

F

G

j

J

G

f

"−0#na g
�

9 0
a

s
−01 Jj"sc# cos"sx# ds j � 1n¦0

"−0# "n¦0#a g
�

9 0
a

s
−01 Jj"sc# sin"sx# ds j � 1n

a � 6
zs1−k1

M =s= − kM

−izk1
M−s1 =s= ³ kM

in which Jj is the _rst kind Bessel function of order j\ and

xl � a cos 0
l

N¦0
p1\ l � 0\ 1\ [ [ [ \ N

being the collocation points along the crack surface[
In addition\ the functions pj and p¹j in eqns "18# and "29# are given by

pj"x\ y# � −a

F

G

j

J

G

f

"−0#n g
�

9

0
s
Jj"sc# cos"sx# e−a=y= ds j � 1n¦0

"−0# "n¦0# g
�

9

0
s
Jj"sc# sin"sx# e−a=y= ds j � 1n

pj"x\ y# � Xj"x\ y# cos f¦Yj"x\ y# sin f

where

Xj"x\ y# � mMa

F

G

j

J

G

f

"−0#n g
�

9

a

s
Jj"sc# cos"sx# e−a=y= ds j � 1n¦0

"−0# "n¦0# g
�

9

a

s
Jj"sc# sin"sx# e−a=y= ds j � 1n

and
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Yj"x\ y# � mMa sgn"y#

F

G

j

J

G

f

"−0#n g
�

9

Jj"sc# sin"sx# e−a=y= ds j � 1n¦0

"−0#n g
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Jj"sc# cos"sx# e−a=y= ds j � 1n

Appendix B

The matrices in eqn "28# are given by

ðF2"x#Ł � ðW0"r¹\ u¹#Ł sin f¦ðW2"r¹\ u¹#Ł cos f\ ðF3"x#Ł � ðW1"r¹\ u¹#Ł sin f¦ðW3"r¹\ u¹#Ł cos f
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